Dienstag, Oktober 28, 2025
Start Blog Seite 42

Eawag: Test mit Fischzellen ersetzt Tierversuche

0

Die OECD gibt grünes Licht für den an der Eawag entwickelten Fischzelllinientest. Damit ist der Weg frei für Unternehmen und Behörden auf der ganzen Welt, die Umwelttoxizität von Chemikalien zu bestimmen, ohne dabei auf Tierversuche zurückgreifen zu müssen

In Produkten des Alltags, in der Landwirtschaft oder der Industrie kommen eine Vielzahl von Chemikalien zum Einsatz. Viele davon gelangen irgendwann auch in die Umwelt. Damit diese Stoffe für den Markt zugelassen werden dürfen, müssen die Hersteller vorab beweisen können, dass sie für Mensch und Natur unbedenklich sind. Dies geschieht mit Toxizitätstests, bei denen Lebewesen der Wirkung der Chemikalien ausgesetzt werden. Dabei sterben jedes Jahr Tausende Fische, weil an ihnen die Wirkung auf aquatische Wirbeltiere getestet wird.

Dank einem vom Wasserforschungsinstitut Eawag in den letzten Jahren entwickelten Testverfahren dürfte dies bald Vergangenheit sein. Dieser Test, der auf isolierten Kiemenzellen der Regenbogenforelle beruht, wurde jetzt von der Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (OECD) als neueste Leitlinie im Bereich der Umwelttoxikologie freigegeben. Damit ist der Weg bereitet für tierversuchsfreie Zulassungsverfahren.

Grosses Interesse der Wirtschaft
Bei dem sogenannten Fischzelllinientest handelt es sich um die weltweit erste Alternative zu Versuchen mit lebenden Fischen. Die neue OECD-Richtlinie ermöglicht es Unternehmen, den Fischzelllinientest für die Produktentwicklung und als Teil der Dossiers für die Chemikalienzulassung einzusetzen. «Es besteht seitens der Industrie ein grosses Interesse an tierversuchsfreien Tests», bestätigt Prof. Kristin Schirmer, Abteilungsleiterin an der Eawag, die zusammen mit Melanie Fischer (ebenfalls Eawag) diese Pionierarbeit federführend vorangetrieben hat. Denn einerseits wachsen die Ansprüche an die Umweltrisikobewertung, andererseits steigt die Anzahl neuer Chemikalien und Produkte, die getestet werden müssen, stetig. Darüber hinaus schont der Fischzelllinientest auch Ressourcen: Die Miniaturisierung durch den Einsatz der Zellen erlaubt, Chemikalien, Wasser und Zeit einzusparen.

«Es besteht seitens der Industrie ein grosses Interesse an tierversuchsfreien Tests.»
Kristin Schirmer

Kristin Schirmer geht davon aus, dass auch die Zulassungsbehörden, so etwa die ECHA in Helsinki oder die US EPA in den USA, den Fischzelllinientest zunehmend als gleichwertigen Ersatz zum regulären Fischtest akzeptieren werden: «Die OECD-Empfehlung war der letzte wichtige Schritt von unserer Seite, nachdem unsere Methode vor zwei Jahren bereits von der ISO zertifiziert wurde. Damit dürfte einem tierversuchsfreien Zulassungsverfahren nichts mehr im Wege stehen».

Damit trägt die Eawag dazu bei, die Toxikologie weiterzuentwickeln und leistet einen wesentlichen Beitrag zur Reduktion von Tierversuchen. Denn für ökotoxikologische Tests wurden im Jahr 2019 allein in der Schweiz Versuche an knapp 8000 Fischen durchgeführt.

Die erste Idee
Dies setzt den Schlusspunkt unter eine lange und intensive Zeit, die Beharrlichkeit und ein unterstützendes Umfeld erforderte. Die Idee zu diesem Testverfahren hatte Schirmer bereits während ihrer Doktorarbeit Mitte der 1990er-Jahre: An der University of Waterloo (CAN) arbeitete sie damals mit exakt der gleichen Zelllinie, auf der die Methode heute noch beruht. Die Zelllinie geht zurück auf Schirmers Doktorvater Niels C. Bols, der die Zellen aus den Kiemen der Regenbogenforelle erstmals isolierte und so kultivierte, dass man sie beliebig oft vermehren kann

https://www.aquaetgas.ch/de/aktuell/branchen-news/20210625_eawag-test-mit-fischzellen-ersetzt-tierversuche/

Online-Biomonitoring von ARA Abwasser

0

Gereinigtes Abwasser kann durch ein Onlinemonitoring mit Organismen kontinuierlich überwacht werden. Das gibt Kläranlagenbetreibern und einleitenden Industriebetrieben die Möglichkeit, schnell auf akute Belastungen zu reagieren.

Die Schweizerische Gewässerschutzverordnung legt fest, dass Stoffe, die Gewässer durch menschliche Aktivitäten belasten, keine nachteiligen Einwirkungen auf die dort lebenden Pflanzen, Tiere und Mikroorganismen und auf die Nutzung der Gewässer haben dürfen. Auch Abwasserreinigungsanlagen (ARA) tragen Mikroverunreinigungen aus kommunalen oder industriellen Quellen in Oberflächengewässer ein. Daher wird das gereinigte Abwasser vor seiner Einleitung ins Gewässer auf problematische Verbindungen überprüft. Dazu werden meist zeitlich begrenzte Proben genommen und mit chemischer Analyse (und teilweise Biotests) im Labor überwacht und zeitaufwändig ausgewertet.

Die Zusammensetzung von Abwasser kann sich jedoch sehr kurzfristig ändern: Das ist besonders bei industriellen Einleitungen der Fall. Manche Unternehmen ändern nämlich häufig ihre Produktepalette und Produktionsprozesse, wodurch immer neue Abfall-und Nebenprodukte entstehen. Online-Biomonitoring-Systeme, die lebende Organismen verwenden, können die Qualität des geklärten Abwassers kontinuierlich in Echtzeit überwachen. Das auch, wenn die belastenden Stoffe unbekannt sind. «Die Verhaltensänderungen, die wir verwenden, reagieren sehr schnell und sensitiv auf eine Schadstoffbelastung», sagt Miriam Langer von der Fachhochschule Nordwestschweiz und der Eawag. «Deshalb möchten wir sie als Frühwarnsysteme einsetzen.» Solche Systeme erlauben es den Kläranlagenbetreibern und einleitenden Betrieben, schnell auf akute Belastungen des Abwassers zu reagieren. Dies eröffnet neue Möglichkeiten, um kritische Industrieabwässer zu erkennen und die Belastung direkt an der Quelle zu verringern.

Sandoz-Unfall als Trigger für Online-Monitoring
Das Potenzial von Online-Biomonitoringsystemen als Frühwarnsysteme für Gewässer ist schon länger bekannt. Bei Verschmutzungen ist es wichtig, rasch reagieren zu können, um eine durchgehend hohe Wasserqualität zu gewährleisten und Unfälle mit langfristigen Folgen für Mensch und Umwelt zu verhindern. So wurde nach der Umweltkatastrophe von Sandoz im Jahr 1986, bei der nach einem Brand unter anderem 30 Tonnen Pestizide in der Rhein gelangten, die Entwicklung von biologischen Frühwarnsystemen stark gefördert. Aktuell werden Online-Biomonitoringsysteme vor allem zur Überwachung von Trinkwasser und Oberflächengewässern eingesetzt. Zur Anwendung der Systeme auf ARA gibt es noch wenig Erfahrung. Deshalb hat das Oekotoxzentrum zusammen mit der Fachhochschule Nordwestschweiz und der Eawag ein Projekt initiiert, um ein geeignetes System zur Überwachung von gereinigtem Abwasser zu etablieren.

Auswahl der Testsysteme
Online-Biomonitoring-Systeme bestehen aus drei Komponenten: 1. dem Testorganismus, der auf das untersuchte Wasser mit Veränderungen z.B. der Photosynthese oder des Verhaltens reagiert. 2. Dem automatischen Detektionssystem, das die Reaktion des Organismus überwacht. 3. Dem Alarmsystem, das ein Signal auslöst, wenn der normale Schwellenwert des Organismus überschritten wird. Als Sensor werden verschiedene Organismen wie Bakterien, Algen, Kleinkrebse oder Fische eingesetzt. Sie sollen – stellvertretend für Organismen im Ökosystem – Veränderungen in der Wasserqualität erfassen. Messparameter sind beispielsweise die Leuchtkraft (bei Bakterien), die Fluoreszenz (bei Algen), das Schwimmverhalten und die Atmung (bei Wasserwirbellosen und Fischen). All diese Parameter können durch Schadstoffe beeinträchtigt werden. Die Systeme arbeiten in Echtzeit, um die Wirkung von Schadstoffen im Wasser, denen die Organismen ausgesetzt sind, zu erkennen.

Ein geeigneter Sensor-Organismus für Abwasser muss mehrere Voraussetzungen erfüllen: Einerseits muss er empfindlich auf die Stoffe reagieren, die nachgewiesen werden sollen. Andererseits sollte er möglichst tolerant gegenüber der sonstigen Abwasserzusammensetzung sein: Abwasser enthält nämlich wesentlich komplexere Inhaltsstoffe als Trinkwasser oder Flusswasser und fordert daher die Nachweissysteme heraus. Da alle Organismen unterschiedlich auf potenzielle Mikroverunreinigungen reagieren, gibt es nicht einen einzigen Online-Biomonitor, der für alle Stoffe geeignet ist. Ideal ist eine Batterie aus verschiedenen-Systemen, die sich gegenseitig ergänzen. Die Forschenden haben hier drei Testsysteme ausgewählt, die verschiedene Ernährungsebenen abdecken: Zum einen die einzellige Grünalge Chlorella vulgaris, bei der die Photosyntheseaktivität betrachtet wird. Zum anderen zwei Süsswasserkrebse, nämlich der Wasserfloh Daphnia magna und der Bachflohkrebs Gammarus pulex. Bei diesen werden verschiedene Verhaltensparameter überwacht.

Prüfung auf der Pilot-ARA
«Zuerst haben wir geprüft, ob die Testsysteme genügend sensitiv sind, um auf Verunreinigungen zu reagieren, und auch im Abwasser gut überleben», erzählt Ali Kizgin vom Oekotoxzentrum. Dazu wurden die Biomonitore in der Pilotkläranlage der Eawag installiert. „Eine Schwierigkeit war, dass das gereinigte Abwasser keine groben Partikel enthalten darf, die das System verstopfen könnten». Daher musste zunächst ein Membranfilter integriert werden, um eine hohe Belastung durch Schwebstoffe und Mikroorganismen im Abwasser zu verhindern: Und tatsächlich zeigte sich bald, dass die Organismen mit dem gefilterten Abwasser gut zurechtkamen. Um das Potenzial der Systeme für die Online-Überwachung zu evaluieren, führten die Forschenden Experimente mit geklärtem Abwasser durch, dem verschiedene Stoffe wie Natriumchlorid, Diuron, Chlorpyrifos, Zinkchlorid und Sertralin zugesetzt wurden. Die Konzentrationen wurden so gewählt, dass sie die gemessenen Parameter beeinträchtigten ohne die Organismen zu töten. Die Ergebnisse waren vielversprechend: Die Organismen reagierten mit messbaren Veränderungen auf die Stoffe und hatten auch mit der Kombination aus Abwasser und Schadstoffen kein Problem.

Erfolgreiche Anwendung auf der grossen ARA
Im nächsten Schritt setzten die Forschenden das System im Grossmassstab auf einer mittelgrossen ARA in der Region ein. «Eine Herausforderung war es, dass wir zunächst einen mobilen Membranfilter bauen lassen mussten, den wir auf die Anlage mitnehmen konnten», erinnert sich Kizgin. Doch dann sei der weitere Betrieb bei dem sechswöchigen Einsatz weitgehend unproblematisch gewesen. Ein Glückfall war die Zusammenarbeit mit der Eawag, die sich mit ihrer neue MS2field-Plattform an dem Versuch beteiligte. MS2field ist eine der ersten mobilen Messstationen, die die kontinuierliche und zeitlich hochaufgelöste chemische Messung von Mikroverunreinigungen im Feld erlaubt. Die detaillierte Auswertung der Daten steht noch aus, doch es steht bereits fest, dass die beobachteten Veränderungen in den Verhaltensmustern der Tiere gut mit dem chemischen Nachweis von kritischen Substanzen korrelierten.

Wie weiter?
Als nächstes stehen Kontrollexperimente auf dem Programm, um zu bestätigen, welche der identifizierten Substanzen durch die Biomonitore nachgewiesen werden können und wie hoch deren Empfindlichkeit ist. Ausserdem sollen die Testsysteme auf weiteren ARA eingesetzt werden. «So wollen wir eine fundierte Basis schaffen, um die Online-Biomonitore als ergänzende Kontrollstufe des Abwassers zu etablieren», sagt Miriam Langer.
 

Die verwendeten Online-Biomonitore
Die einzellige Grünalge Chlorella vulgaris regiert mit einer veränderten Photosyntheseaktivität auf Schadstoffe. Diese wird im Gerät durch Fluoreszenzmessungen überwacht. Die Algen werden in einem integrierten Fermenter kultiviert und für die Messung automatisch entnommen. Das Gerät vergleicht die Wirkung der Wasserprobe auf die Algen mit der Wirkung von Referenzwasser.

Beim Wasserflohtest wird das Abwasser kontinuierlich durch Messkammern geleitet, in der sich die Tierchen befinden. In den Kammern wird das Schwimmverhalten der Tiere mit einer Videokamera gefilmt. Die Schwimmbahnen werden aufgezeichnet und dienen zur Berechnung verschiedener Parameter wie zum Beispiel der Schwimmhöhe oder der Schwimmgeschwindigkeit.

Für die Überwachung mit Hilfe von Bachflohkrebsen werden die Tiere in Sensorkammern gegeben. Die Kammern sind mit Elektroden ausgerüstet und befinden sich in einem Testbecken, das kontinuierlich von Abwasser durchflossen wird. Während ein Elektrodenpaar eine Wechselspannung erzeugt, misst ein zweites Paar die Veränderungen des elektrischen Feldes, die durch die Bewegungen des Tieres erzeugt werden. Ändert sich das Verhalten der Krebschen ausserhalb der zulässigen prozentualen Abweichung, schlägt das System Alarm. Dies zum Beispiel, weil die Aktivität der Tiere plötzlich zunimmt (Flucht) oder abnimmt (starke Beeinträchtigung durch Testsubstanz, bis hin zu Tod).

Es gibt ein Video zum Testsystem
https://youtu.be/Ch7OxGW-48k

https://www.eawag.ch/de/news-agenda/news-plattform/news/online-biomonitoring-von-ara-abwasser/

Zymo Research Europe GmbH

0
Mülhauser Str. 9
79110 Freiburg

Tel.: +49 761 60068 71 0
Fax: +49 761 60068 71 20

E-Mail: info@zymoresearch.de
Web: www.zymoresearch.de

Zymo Environ Water RNA Kit
• Anreicherung von Gesamt-RNA aus großen Volumina
• Optimiert für Wasser-, Abwasser-, Schlamm-, Fäkalien- und Biofilm-Proben
• Pathogeninaktivierung mittels DNA/RNA Shield™ Reagenz für eine sichere Handhabung
• Entfernung von PCR-Inhibitoren
• Elution von konzentrierter RNA in hoher Qualität
• RNA für jede Downstream-Anwendung (z. B. RT-qPCR, RTddPCR und NGS) 

Zymo Environ COVID-19 Abwasser Service
• Schnelle, sichere COVID-19-Überwachung
• NGS-basierte Technologie zur Variantenidentifikation
• Sicherer und stabiler Transport von Proben (von Testlabors, Sammelstellen usw.)

Externen-Lehrgang Fachkraft für Abwassertechnik (DWA)

0

Den Vorbereitungs-Lehrgang auf die staatliche Externen-Prüfung zur Fachkraft für Abwassertechnik bietet die DWA beim BEW in Essen an. In Bayern ist die Bayerische Verwaltungsschule (BVS) zuständig und in Norden die Kreisvolkshochschule Norden (KVHS). Schauen Sie, welcher der Standorte für Sie passt und informieren Sie sich bei Ihrer zuständigen Stelle, ob Sie mit Ihren bisherigen Qualifikationen zur Externen-Prüfung zugelassen werden können.

Essen Detaillierte Informationen finden Sie unter
  https://eva.dwa.de/details.php?id=4546&lv=1
   
Bayern Detaillierte Informationen und Termine finden Sie unter
  https://www.bvs.de/ausbildung/umwelt-und-technik/fachkraft-in-den-umwelttechnischen-berufen/index.html
   
Norden Detaillierte Informationen und Termine finden Sie unter
  https://umwelttechnik.kvhs-norden.de/index.php/externe/

Externen-Lehrgang Fachkraft für Abwassertechnik (DWA)

0

Den Vorbereitungs-Lehrgang auf die staatliche Externen-Prüfung zur Fachkraft für Abwassertechnik bietet die DWA beim BEW in Essen an. In Bayern ist die Bayerische Verwaltungsschule (BVS) zuständig und in Norden die Kreisvolkshochschule Norden (KVHS). Schauen Sie, welcher der Standorte für Sie passt und informieren Sie sich bei Ihrer zuständigen Stelle, ob Sie mit Ihren bisherigen Qualifikationen zur Externen-Prüfung zugelassen werden können.

Essen Detaillierte Informationen finden Sie unter
  https://eva.dwa.de/details.php?id=4546&lv=1
   
Bayern Detaillierte Informationen und Termine finden Sie unter
  https://www.bvs.de/ausbildung/umwelt-und-technik/fachkraft-in-den-umwelttechnischen-berufen/index.html
   
Norden Detaillierte Informationen und Termine finden Sie unter
  https://umwelttechnik.kvhs-norden.de/index.php/externe/

Tenside

0

1. Einleitung

Tenside sind oberflächenaktive Substanzen (eng. surfactant = surface active agent), die sich an Grenzflächen anreichern und als Lösungsvermittler die Grenzflächenspannung zwischen zwei verschiedenen Phasen herabsetzen. Sie sind also in der Lage, nicht mischbare Flüssigkeiten – z.B. Öl und Wasser – zu dispergieren, d. h. sie fein ineinander zu verteilen. Dies wird durch ihren amphiphilen (= beides liebenden) Charakter ermöglicht, der sich aus ihrem molekularen Aufbau ergibt. Tenside besitzen einen hydrophilen (wasserliebenden) und einen hydrophoben (wasserabweisenden) Teil. Der hydrophile Teil ist gleichzeitig polar und lipophob (fettabweisend), während der hydrophobe Teil unpolar und lipophil (fettliebend) ist. In wässrigen Phasen bilden Tenside kugelförmige Strukturen, so genannte Mizellen, die jeweils mehrere Tensidmoleküle enthalten (Abb. 1).

Bei niedrigen Tensidkonzentrationen positionieren sich die einzelnen Moleküle zunächst an der freien Oberfläche. Mit steigender Tensidkonzentration nimmt die Oberflächenspannung der Flüssigkeit ab. Sobald eine bestimmte Tensidkonzentration erreicht ist, kommt es zur Mizellenbildung, da nun alle Plätze an der Oberfläche besetzt sind. Ab dieser Konzentration bleibt die Oberflächenspannung der Flüssigkeit konstant. Diese für jedes Tensid spezifische Konzentration wird kritische Mizellbildungskonzentration (eng. critical micelle concentration = cmc) genannt und ist ein wichtiger Parameter bezüglich der Anwendbarkeit der Tenside.

Synthetische Tenside haben wie viele industriell hergestellte Stoffe ihr Gegenstück in der Natur. Natürliche Tenside oder Biotenside werden von Mikroorganismen hergestellt und sind somit auch biologisch abbaubar. Eine Voraussetzung für die biologische Abbaubarkeit ist die Anwesenheit von dazu befähigten Organismen. Da die Herstellung von Biotensiden jedoch sehr teuer ist, werden überwiegend synthetische Tenside genutzt.

2. Klassifizierung von Tensiden

Tenside können sowohl anhand ihrer wasserabweisenden als auch ihrer wasserliebenden Gruppen klassifiziert werden. In der Praxis erfolgt die Klassifizierung überwiegend nach den wasserliebenden Gruppen. Dabei werden die Tenside in ionische, nichtionische und amphotere/zwitterionische Tenside eingeteilt.

Ionische Tenside werden in anionische und kationische Tenside unterschieden. Bei anionischen Tensiden ist die wasserliebende Gruppe negativ geladen, bei kationischen Tensiden dagegen positiv. Der wasserliebende Teil von nichtionischen Tensiden ist ungeladen. Bei amphoteren Tensiden – auch zwitterionische Tenside genannt – sind Kation und Anion durch kovalente Bindungen verknüpft, sodass die Tensidmoleküle wie nichtionische Tenside nach außen hin elektrisch ungeladen sind, durch die Zugabe von Anionen oder Kationen jedoch zu anionischen oder kationischen Tensiden werden können (Tab. 1). Bei der Klassifizierung nach wasserabweisenden Gruppen wird in Kohlenwasserstofftenside, Perfluortenside, Silikontenside und Block-Copolymere unterschieden (Kosswig & Stache, 1993).

Tabelle 1: Einteilung der Tenside nach hydrophilen (wasserliebenden) Gruppen

3. Allgemeine Anwendungsbereiche

Die erste nachweisbare Nutzung von Tensiden wird den Sumerern um 2500 v. Chr. in Form von Seife zugeschrieben. Die Herstellung erfolgte durch die Verseifung von Öl und Pottasche mit Alkalien wie Soda. Aufgrund des Mangels an Pottasche und Soda war Seife ein kostbares Gut, das eher als Heilmittel oder Kosmetikum diente und nicht wie heute für die Reinigung verwendet wurde. Erst Ende des 18. Jahrhunderts wurde Seife für den Großteil der Bevölkerung erschwinglich, da die Verfügbarkeit von Soda durch das Leblanc-Verfahren sichergestellt wurde (Kosswig & Stache, 1993).

Tenside besitzen aufgrund ihrer chemischen Eigenschaften mannigfaltige Anwendungsmöglichkeiten und Funktionen, die weit über die Verwendung als Reinigungsmittel hinausgehen. Die oberflächenaktiven Substanzen werden auch in der Kosmetik sowie in vielfältigen industriellen und technischen Prozessen verwendet.

Wirtschaftlich stellen anionische Tenside die wichtigste Tensidklasse dar, gefolgt von nichtionischen Tensiden. Ein Tensid alleine kann meist nicht alle Anforderungen im Hinblick auf die gewünschte Leistung (z.B. Reinigung) sowie ökologische und wirtschaftliche Aspekte erfüllen. Deshalb werden häufig Tensidmischungen genutzt, in denen sich die verschiedenen Tenside in ihren Eigenschaften ergänzen.

Die Grundlage für viele waschtechnische Prozesse wie Schmutzablösung, Netzwirkung, Dispergier- und Schmutztragevermögen besteht in der Adsorption der Tenside an Grenzflächen. In wässrigen (polaren) Phasen kehrt sich der wasserliebende Teil der Tenside der wässrigen Phase zu, während der wasserabweisende Teil aus der wässrigen Phase hinausgedrängt wird. Der wasserabweisende Teil führt zu einer Anziehung der Tensidmoleküle zum festen, unpolaren Substrat, wie beispielsweise Schmutzpartikeln und Textilfasern. Diese werden im Wasser oft negativ geladen und stoßen sich somit stärker ab. Außerdem werden die Bindungsenergien zwischen Schmutz und Substrat herabgesetzt, sodass sich der Schmutz leichter entfernen lässt.

Die Anwendungen von Tensiden in Reinigungsmitteln erstrecken sich von Waschmitteln über Spülmittel zu Industriereinigungsmitteln. Waschmittel können durch die Verwendung verschiedener Tenside an das gewünschte Ergebnis angepasst werden. In Wollwaschmitteln werden beispielsweise neben nichtionischen Tensiden auch kationische Tenside eingesetzt, die die Wolle weich und flauschig machen.

Bei Geschirrspülmitteln werden die Tensidmischungen an manuelles oder maschinelles Spülen angepasst. In Handspülmitteln sind Tenside essentiell, die die Haut nicht angreifen. Beim maschinellen Spülen spielen beispielsweise Schauminhibitoren eine Rolle, die dafür sorgen, dass es bei der hohen Pumpleistung nicht zur übermäßigen Schaumbildung und dadurch zu Maschinenschäden kommt. In Industriereinigungsmitteln kommt es darauf an, ob diese alkalisch, neutral oder sauer sind. Dementsprechend müssen die ausgewählten Tenside eine Stabilität im alkalischen oder sauren Milieu aufweisen.

Auch in der Kosmetik findet eine vielfältige Nutzung von Tensiden statt. Im Gegensatz zu Industriereinigungsmitteln steht hier die Hautverträglichkeit im Vordergrund. Da bei der Hautreinigung neben unerwünschtem Fett auch Hautfette mit entfernt werden, kann es bei zu starker Entfettung zu einer kurzzeitigen Veränderung bis zu einer Zerstörung der Hautbarrierefunktion (dem Schutzmantel der Haut) kommen. Mögliche Folgen sind trockene Haut aufgrund eines erhöhten Wasserverlusts oder andere Hautirritationen, da die Haut nun auch durchlässiger für Fremdstoffe gemacht wird. Um diese Nebenwirkungen auszuschließen, sollten möglichst milde Tenside in der Kosmetikindustrie genutzt werden. Allergische Reaktionen sind meist nicht den Tensiden, sondern den zugefügten Duftstoffen und Konservierungsmitteln zuzuschreiben.

Während bei der kosmetischen Reinigung meist anionische und amphotere Tenside genutzt werden, werden bei der Pflege der Haut überwiegend nichtionische Tenside als Emulgatoren genutzt. Bei der Haarpflege dominieren kationische Tenside, weil sich die Haare durch die positive Ladung besser kämmen lassen. Die dermatologische Verträglichkeit spielt bei Pflegeprodukten eine primäre Rolle, da diese meist bis zur nächsten Reinigung auf der Haut verbleiben und nicht wie bei Reinigungsmitteln schnell wieder abgespült werden (Kosswig & Stache, 1993).

In der Lebensmittelindustrie werden Tenside eingesetzt, um die Konsistenz oder auch die Verteilung der verschiedenen Phasen ineinander zu beeinflussen. Weit verbreitet ist der Einsatz von Tensiden als Emulgatoren in Milchprodukten, Margarine, Brotaufstrichen oder Dressings, um die Bestandteile Wasser und Fett miteinander zu vermischen (Tripathy et al., 2018).

In Pflanzenschutzmitteln werden Tenside als Emulgatoren genutzt, um durch das Herabsetzen der Oberflächenspannung eine gleichmäßige Verteilung der Spritzflüssigkeit auf großen Flächen sowie eine bessere Benetzung der Pflanzen zu gewährleisten. Außerdem können Tenside die Wirkstoffmenge bestimmen, die auf der Blattoberfläche zurückbleibt und dadurch das Eindringen des Wirkstoffes in die Pflanze beeinflussen (Kosswig & Stache, 1993).

In der pharmazeutischen Industrie werden die Funktionen von Tensiden genutzt, um Wirkstoffe in Tabletten im Körper gezielt zu aktivieren. Dadurch kann sowohl die Resorption des Wirkstoffs im Körper als auch seine Verträglichkeit gesteuert werden. Mit Emulgatoren kann eine Depotwirkung sowie eine beschleunigte oder verzögerte Wirkung von Arzneimitteln erzielt werden. In diesem Anwendungsbereich kommt es maßgeblich auf die pharmakologische und toxikologische Unbedenklichkeit der genutzten Tenside an (Kosswig & Stache, 1993). Um Arzneimittel im Körper gegen die eigene Immunabwehr zu schützen und um ihre Bioverfügbarkeit zu erhöhen, werden diese in sogenannte Liposomen eingebettet (Kepczynski & Róg, 2016). Liposome sind kugelförmig und bestehen aus einer Doppelschicht von Membranmolekülen, die einen wasserliebenden und wasserabweisenden Teil besitzen. Die dadurch entstandene Membran kann in ihrem Inneren fettliebende Substanzen einlagern und im Körper zum gewünschten Wirkort transportieren. Vor allem für die Krebstherapie besitzt die Nutzung von Liposomen eine große Bedeutung (Liang et al., 2019).

In der Textilindustrie existiert ebenfalls ein breites Spektrum für die Verwendung von Tensiden. Diese werden unter anderem zur Vorbehandlung von Fasern, in Färbereihilfsmitteln, Hydrophobiermitteln (zur Imprägnierung), Antistatika oder Beschichtungsmitteln eingesetzt.

Bei der Herstellung von Lacken, Pigmenten und Druckfarben werden Tenside als Dispergier-, Antiabsetz- oder Verlaufmittel zugegeben. In der Papierindustrie finden Tenside in vielen Prozessen Anwendung. Beispielsweise werden sie zur Harzentfernung bei der Zellstoffgewinnung und Pigmentdispergierung sowie zur Schaumbekämpfung eingesetzt. Zudem kommen Tenside bei der Regenerierung von Altpapier zum Einsatz. In der Lederindustrie werden Tenside in verschiedenen Arbeitsphasen wie der Vorbehandlung, Gerbung und Nachbehandlung sowie der Pflege des Leders verwendet. In der Fotoindustrie können Tenside in Gießhilfsmitteln, Antistatika, Gleitmitteln sowie Emulgier- und Dispergiermitteln gefunden werden. Bei der Betonproduktion werden schäumende Tenside als Luftporenbildner in Leichtbeton eingesetzt, der dadurch eine geringere Anfälligkeit gegenüber Frostschäden erlangt (Kosswig & Stache, 1993).

In der Mineralölindustrie werden Tenside genutzt, um das Kälteverhalten der Produkte zu verbessern und um Korrosionsschäden zu verhindern. Kraftstoffen werden Tenside zur Vermeidung von Ablagerungen durch Verbrennungsrückstände sowie zur Senkung des Kraftstoffverbrauchs und zur Reduzierung von Schadstoffemissionen zugesetzt.

Einige Tenside wie quartäre Ammoniumverbindungen werden aufgrund ihrer bakteriostatischen Wirkung als Biozide oder in Desinfektionsmitteln eingesetzt. Aufgrund ihrer permanent positiven Ladung adsorbieren sie stark an Oberflächen und Partikeln. In Kläranlagen werden sie schlecht biologisch abgebaut, aber adsorptiv zurückgehalten, so dass sie im Klärschlamm wieder zu finden sind. Desinfektions- und Reinigungsmittel mit quartären Ammoniumverbindungen sollten vermieden werden, da einige Stoffgruppen als wassergefährdend eingestuft werden (LANUV, 2014).

In Feuerlöschschäumen waren früher perfluorierte Tenside (PFT) enthalten, die für eine bessere Benetzung von brennenden Flächen und somit für bessere Löscheigenschaften sorgten. Außerdem verhinderten sie eine Rückzündung der Schaummittel, wodurch das Löschpersonal besser geschützt wurde. Seit Juli 2020 ist der Einsatz von Perfluoroktansäure (PFOA), einer Leitsubstanz unter den perfluorierten Tensiden, jedoch verboten, da diese Art von Tensiden in der Umwelt nicht biologisch abbaubar ist und sich in Lebewesen anreichert (UBA, 2017).

Tenside werden darüber hinaus für die biologische Sanierung von mit Schadstoffen kontaminierten Böden genutzt. Sie können die Bioverfügbarkeit von organischen Schadstoffen wie polycyclischen aromatischen Kohlenwasserstoffen (PAK) erhöhen, die dadurch von spezialisierten Mikroorganismen abgebaut werden können (Geller, 2001). Die Erhöhung der Bioverfügbarkeit wird durch die Verringerung der Oberflächenspannung zwischen den unpolaren Kohlenwasserstoffen und ihrer wässrigen Umgebung erreicht. Die wasserabweisende Gruppe des Tensids lagert sich dabei an die fettliebenden Schadstoffe an. Diese werden wiederum durch die wasserliebende Gruppe des Tensids in Lösung gebracht, wodurch ihre biologische Verfügbarkeit erhöht wird (Oberthür, 2004). Bei der Bodensanierung sind Biotenside eine Alternative zu schwer abbaubaren synthetischen Tensiden. Es besteht die Möglichkeit, dass Bakterien die Biotenside vor Ort produzieren, um Schadstoffe abzubauen. Dabei müssen sich die Bakterien jedoch zunächst gegen die ansässige, konkurrenzstarke Mikroflora behaupten, die schon an die Standortbedingungen angepasst ist (Geller, 2001).

Weiterhin erstreckt sich die Nutzung von Tensiden auf die metallverarbeitende Industrie, die Galvanotechnik, den Bergbau, die Erdölförderung und viele weitere Bereiche (Kosswig & Stache, 1993).

4. Biologischer Abbau und Anwendung von Tensiden in Kläranlagen

Wenn Tenside für eine bestimmte Anwendung genutzt werden sollen, ist bei der Auswahl größte Sorgfalt geboten, da viele synthetische Tenside nicht vollständig biologisch abbaubar sind. Zunächst unterliegen sie dem Primärabbau, bei dem sie ihre Oberflächenaktivität verlieren. Der wasserliebende Teil wird dabei vom wasserabweisenden Teil getrennt. Bei diesem Prozess entstehen Metabolite (Abbauprodukte), die durch den Endabbau in Wasser, Mineralien und CO2 zerlegt werden müssen. Einige Metabolite sind jedoch nicht biologisch abbaubar und können aufgrund ihrer steigenden Hydrophobizität toxischer sein als ihre Ausgangssubstanzen. Für eine effiziente Mineralisation der Tenside ist darüber hinaus eine spezielle Bakteriengemeinschaft in einer an die Tenside angepassten Umgebung (z.B. im Belebtschlamm in Kläranlagen) notwendig, da die Tenside je nach Abwasserzusammensetzung und -herkunft die unterschiedlichsten Eigenschaften aufweisen (Carvalho et al., 2003).

Auch in Kläranlagen besitzen Tenside vielfältige Anwendungsbereiche. Der Einsatz von Tensiden als Hilfsmittel in Kläranlagen scheint zunächst paradox, da sich im Abwasser schon ein großes Tensidgemisch aus Reinigungsmitteln, Kosmetika und Industrie befindet. Diese Tenside haben ihre Oberflächenaktivität jedoch meist schon durch den bereits im Kanal durchlaufenen Primärabbau verloren (Strunkheide, 2003).

Die Bakterien besitzen eine äußere Schutzhülle, die sogenannte Zellmembran. Die Zellmembran besteht aus Phospholipiden, die eine Doppelschicht bilden und als Biotenside bezeichnet werden, da sie wie die synthetischen Tenside einen wasserliebenden Kopf und wasserabweisenden, fettliebenden Schwanz besitzen (Abb. 2).

Aufgrund des ähnlichen Aufbaus können sich externe Tenside in die Zellmembran von Bakterien einlagern. So wie Tenside in Kosmetikprodukten unsere Haut durchlässiger für bestimmte Stoffe machen, führt auch die Einlagerung von Tensiden in die Zellmembran dazu, dass ihre Durchlässigkeit (Permeabilität) steigt (Abb. 3). Dadurch können Biomoleküle (z.B. Enzyme) leichter aus der Bakterienzelle hinaus transportiert werden, was einen schnelleren Abbau der Abwasserinhaltsstoffe ermöglicht (Oberthür, 2004).

Durch die Einlagerung der Tenside in die Zellmembran können die Belebtschlamm-bakterien bei Belastungsstößen zügiger arbeiten. Da der Transportwiderstand in der Zellmembran durch die eingelagerten Tenside herabgesetzt wird, können die Mikroorganismen die Abwasserinhaltsstoffe deutlich schneller abbauen. Der beschleunigte Abbau der Abwasserschmutzfracht wird durch weitere Mechanismen begünstigt. Zum einen hemmen die zugesetzten Tenside die Koaleszenz der Luftblasen im Belebungsbecken. Das bedeutet, dass der eingeblasene Sauerstoff in kleineren Bläschen vorliegt und sich zudem länger im Belebungsbecken hält. 

Durch die kleineren Bläschen wird die Kontaktfläche für die Mikroorganismen und somit deren Sauerstoffversorgung erhöht. Zum anderen werden wasserunlösliche Kohlenstoffverbindungen (v.a. Fette) zu feinsten Tröpfchen dispergiert. Dies erhöht die Angriffsfläche für Mikroorganismen erheblich, da diese über die Zellmembran direkt mit dispergierten Tröpfchen in Kontakt treten können (Strunkheide, 2003).

In Folge des schnelleren Abbaus können sich deutlich mehr höher organisierte, räuberische Organismen (z.B. Wimpertierchen, Räder- oder Bärtierchen) in der Mikroorganismengemeinschaft im Belebtschlamm (Belebtschlammbiozönose) entwickeln. Die höher organisierten Organismen sind überwiegend an geringere Belastungen (BSB5, NH4-N) bzw. relativ hohe Sauerstoffkonzentrationen angepasst und können sich bei abweichenden Bedingungen nicht im Belebungsbecken halten. Werden die Stoßbelastungen von den Bakterien aufgrund des „Tensid-Dopings“ schneller abgebaut, können sich die höheren Organismen deutlich besser vermehren. Diese räuberischen Organismen benötigen für den Fang ihrer Beute viel Energie, sodass ein Großteil der verfügbaren Nahrungsenergie nicht in Biomasse, sondern in CO2 umgewandelt wird.

Dieser Effekt kann einerseits zur Reduktion von Überschussschlamm auf Kläranlagen genutzt werden (Bioserve-Verfahren). Dafür wird eine bestimmte Tensidmischung in geringer Konzentration in den Rücklaufschlamm dosiert. Der TS-Gehalt im Belebungsbecken wird dabei konstant gehalten. Durch die erhöhte Fraßtätigkeit der Belebtschlammorganismen sinkt der spezifische Überschussschlammanfall bezogen auf die CSB-Fracht im Zulauf zur Biologie. Das Schlammalter steigt infolge dessen an, ohne dass der TS-Gehalt angehoben werden muss.

Andererseits kann durch die Dosierung von Tensiden in den Rücklaufschlamm Belüftungsenergie eingespart werden (Bioserve-Energy-Verfahren). Aufgrund der höheren Anzahl an räuberischen Organismen, die den Großteil der Nahrungsenergie in CO2 umwandeln, sinkt der TS-Gehalt im Belebungsbecken bei konstantem Überschussschlamm-Abzug. Da der Biomassegehalt nun geringer ist, steigt die Schlammbelastung an. Aufgrund des verringerten TS-Gehalts sinkt die Grundatmung des Belebtschlammes, wodurch der Stromverbrauch um ca. 10 % pro g TS/l gesenkt werden kann. Trotz der höheren Schlammbelastung wird die Reinigungsleistung der Kläranlage nicht beeinträchtigt, da die Stoffwechselgeschwindigkeit durch die Tensidzugabe erhöht wird. Die höhere Schlammbelastung sorgt dagegen für einen höheren Energiegehalt des Überschussschlammes, was zusätzlich zur eingesparten Belüftungsenergie zu einer besseren Gasausbeute im Faulturm führt.

Bei beiden Verfahren werden Gram-positive Fadenbakterien wie Microthrix parvicella und Nocardioforme Actinomyceten („Nocardia“) reduziert, da die von ihnen bevorzugten Substrate durch die Tenside auch für flockenbildende Bakterien verfügbar gemacht werden und sie somit deren Konkurrenz unterliegen. Auch die Zunahme der räuberischen Organismen (z. B. Zangenrädertierchen wie Cephalodella spp.) führen zum vermehrten Fraß der Fadenbakterien. Das Schlammabsetzverhalten wird verbessert, da sich auch Organismen („Weidegänger“) vermehren, die eine sogenannte „Flockenpflege“ betreiben (z.B. Aspidisca spp.). Die Belebtschlammflocken bleiben durch das „Abweiden“ rund und kompakt, weshalb sie sich besser absetzen.

Der beschleunigte Substratabbau begünstigt die Ausbildung einer stabilen und leistungsfähigen Belebtschlammbiozönose mit vielen Protozoen. Diese leistungsstarke Organismengemeinschaft sorgt für einen zuverlässigen Abbau der CSB- und BSB5-Frachten und eine stabile Nitrifikation.

In hohen Konzentrationen können Tenside jedoch auch zu Membrandefekten führen und die Zelle zerstören (Oberthür, 2004). Für den Überschussschlammaufschluss mit Tensiden (TESI) wird genau dies genutzt, indem vor der maschinellen Eindickung eine erhöhte Tensidkonzentration auf den Überschussschlamm dosiert wird. Aufgrund der gesteigerten Membrandurchlässigkeit können die Bakterienzellen besser aufgeschlossen werden, wodurch die Gasausbeute im Faulturm steigt.

Zudem werden die Bindungen zwischen den Belebtschlammflocken geschwächt und die Auflösung von eiweißhaltigen Schleimstoffen (extrazellulären polymeren Substanzen = EPS) unterstützt. Durch die Zerstörung der Flockenstruktur wird Wasser aus dem Inneren der Flocken frei, was in einer verbesserten Schlammentwässerung resultiert (Guan et al., 2017). Die von der Bioserve GmbH verwendeten Tenside sind leicht abbaubar und unterliegen einem vollständigen biologischen Abbau nach 28 Tagen (Testreihe OECD 301 F).

Tenside können neben der Entfernung von Schadstoffen aus Böden (siehe Abschnitt 3) auch zur Entfernung von organischen Schadstoffen aus dem Schlamm beitragen. Der Mechanismus ist dabei derselbe: Die Bioverfügbarkeit der Schadstoffe wird durch eine Verringerung der Oberflächenspannung zwischen Schlamm und Schadstoff verbessert, was den biologischen Abbau durch Mikroorganismen ermöglicht (Guan et al., 2017).

Neben organischen Schadstoffen können auch Schwermetalle mithilfe von Tensiden aus dem Schlamm entfernt werden. Aufgrund ihrer Bindungsfähigkeit können Tenside die Desorption von Schwermetallen vom Schlamm verbessern. Auch bei der Biolaugung (bioleaching) führt der Einsatz von Tensiden zu einer erfolgreichen Entfernung von Schwermetallen aus dem Schlamm. Dabei spielt die Versauerung des Schlamms durch Eisenoxidation (durch Acidithiobacillus ferrooxidans) oder Schwefeloxidation (durch A. thiooxidans) eine wichtige Rolle. Der Zusatz von Tensiden verringert die Oberflächenspannung von Schwefel, wodurch dessen Oxidation durch A. thiooxidans beschleunigt wird. Durch die dabei produzierte Säure wird die Löslichkeit der Schwermetalle erhöht (Guan et al., 2017; Xin et al., 2009).

5. Fazit

Die Anwendungsgebiete der Tenside sind aufgrund ihrer spezifischen Eigenschaften breit gefächert. In der Industrie werden je nach Anspruch an die Reinigungsleistung, Hautverträglichkeit, Schaumbildung etc. verschiedenste Tenside oder Tensidmischungen hergestellt und genutzt. Sehr häufig ist auch der Einsatz als Emulgatoren und Netzmittel. Im Umweltbereich werden Tenside verwendet, um mit Schadstoffen kontaminierte Böden zu reinigen.

Die Bioserve GmbH macht sich zu Nutze, dass einige Tenside die Durchlässigkeit von Zellmembranen erhöhen, und somit den Abbau von Abwasserinhaltsstoffen beschleunigen. Daraus resultieren eine bessere Flockenstruktur, eine leistungsfähigere Belebtschlammbiozönose, eine Reduzierung von Fadenbakterien, bessere Ablaufkonzentrationen von CSB, BSB5 und Stickstoff sowie eine Begrenzung des biologischen Überschussschlammanfalls, was wiederum eine Entlastung der Schlammbehandlungsanlagen mit sich bringt.

Bei der Verwendung von Tensiden müssen jedoch auch die Risiken für die Umwelt in Betracht gezogen werden. Bei der Auswahl der Tenside für bestimmte Anwendungen sollten immer Tenside genutzt werden, die gut biologisch abbaubar sind und somit keinen Schaden in der Umwelt anrichten können.

Die Anwendungsmöglichkeiten von Tensiden unterliegen einer stetigen Entwicklung und es werden immer neue Einsatzgebiete erforscht. Die Nutzung von Tensiden zur besseren Übermittlung von medizinischen Wirkstoffen im Körper ist nur ein Gebiet mit großem Potenzial. Hierdurch können beispielsweise verbesserte Methoden für die Krebstherapie entwickelt werden. Aber auch im Abwasserbereich bergen Tenside ein großes Potenzial. Durch ihren Einsatz können Kosten, die durch die Klärschlammentsorgung oder Belüftung entstehen, erheblich reduziert werden. Darüber hinaus tragen sie zum Gewässerschutz bei, indem die Ablaufwerte reduziert werden.

Anschrift des Verfassers:
Felicitas Schulz
Bioserve GmbH
Rheinhessenstraße 9a
D-55129 Mainz

Tel.: 06131/28 910-16
Fax: 06131/28 910-17
schulz@bioserve-gmbh.de
http://www.bioserve-gmbh.de

6. Literatur

1. Calbiochem (Bhairi, S. M.) (1997): Detergents – A Guide to the Properties and Uses of Detergents in Biological Systems, Calbiochem-Novabiochem Corporation.
   
2. Kosswig, K., Stache, H. (1993): Die Tenside, Carl Hanser Verlag München Wien, ISBN 3‐446‐16201‐1.
   
3. Tripathy, D. B., Mishra, A., Clark, J., Farmer, T. (2018): Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review, C. R. Chimie, 21: 112-130.
   
4. Kepczynski, M., Róg, T. (2016): Functionalized lipids and surfactants for specific applications, Biochimica et Biophysica Acta, 1858: 2362–2379.
   
5. Liang, C., Chao, Y., Yi, X., Xu, J., Feng, L., Zhao, Q., Yang, K., Liu, Z. (2019): Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies, Biomaterials, 197: 368-379.
   
6. LANUV (2014): ECHO-Stoffbericht, Quartäre Ammoniumverbindungen (QAV), abgerufen am 10.07.2020 unter https://www.lanuv.nrw.de/fileadmin/lanuv/analytik/pdf/ECHO_QAV_Mai_2014.pdf.
   
7. UBA (2017): EU verbietet PFOA, abgerufen am 08.07.2020 unter
https://www.umweltbundesamt.de/themen/eu-verbietet-pfoa.
   
8. Geller, A. (2001): Leitfaden „Biologische Verfahren zur Bodensanierung“, Hrsg. UBA, Berlin.
   
9. Oberthür, A. M. C. (2004): Aerob-thermophile Reinigung mineralölkontaminierter Abwässer, Dissertation, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreth.
   
10. Carvalho, G., Novais, J. M, Pinheiro, H. M. (2003): Activated sludge acclimatisation kinetics to non-ionic surfactants, Environmental Technology, 24: 1, 109-114
   
11. Strunkheide, J. (2003): Neue Gesetztesvorgaben für Kläranlagen – Überschussschlamm-Reduktion durch Tenside, Klärtechnik, Sonderdruck aus wwt 12/2003, S. 34-41.
   
12. Guan, R., Yuan, X., Wu, Z., Wang, H., Jiang, L., Li, Y., Zeng, g. (2017): Functionality of surfactants in waste-activated sludge treatment: a review, Science of the Total Environment, 609: 1433-1442.
   
13. OECD (1992): OECD Guideline for Testing of Chemicals, Adopted by the Council on 17th July 1992, Ready Biodegradability abgerufen am 18.06.2020 http://www.oecd.org/chemicalsafety/risk-assessment/1948209.pdf.
   
14. Xin, B., Zhang, D., Zhang, X., Xia, Y., Wu, F., Chen, S., Li, L. (2009): Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria, Bioresource Technology, 100: 6163–6169.

 

 

 

Bohne GmbH

0

Hauptsitz:
Hafenbahnstraße 6a
70327 Stuttgart-Obertürkheim

Tel. +49 (0)711 91 89 73-0
Fax +49 (0)711 91 89 73-90
E-Mail: info@bohne-pumpen.de
Web: https://www.bohne-pumpen.de/home/

Servicestützpunkt:
Stattmannstr. 26
72644 Oberboihingen

Ansprechpartner: Herr Christian Aichele
E-Mail: info@bohne-pumpen.de
Tel.: +49 711 918973-62
Fax: +49 711 918973-60

Kurzbeschreibung
Wir sind Bohne Pumpen. Wir bieten vom Verkauf bis zur Reparatur und schnellem 24/7 Notdienst kompetente, ehrliche Beratung, jahrelange Erfahrung, höchste technische Kompetenz und zuverlässigen Service. Sprechen Sie mit uns!

KI-basiertes Warnsystem vor Starkregen und urbanen Sturzfluten

0

KIWaSuS steht für „KI-basiertes Warnsystem vor Starkregen und urbanen Sturzfluten“
Im Projekt soll ‚Künstliche Intelligenz‘ eingesetzt werden. Es handelt sich um eine Technik, die eher in Smartphones, Autos oder Sprachassistenten zur Mustererkennung in Bildern und Sprache eingesetzt wird. In KIWaSuS soll KI eingesetzt werden, Zusammenhänge und Muster bei der Entstehung von Starkregenzellen zu erlernen, um dann die zeitliche und räumliche Entwicklung von Starkregenzellen besser vorhersagen zu können. Auch soll KI verwendet werden, um das Verhältnis zwischen Niederschlag und dem Abfluss zu erlernen. So sollen Überlastungen des Kanalnetzes und Überschwemmungen besser zu beschreiben sein.

Starkregen und Sturzfluten sind kein neues Phänomen. Doch die extremen Wetterereignisse, besonders in den Sommermonaten, nehmen in Folge des Klimawandels zu. Vor allem in urbanen Gebieten, also Ruhrgebietsstädten wie Gelsenkirchen, kommt es schnell zur Überlastung der Kanalnetze, zu Überflutungen von Straßen und Unterführungen. Damit sind Rettungswege, z. B. für die Feuerwehr, blockiert. Hinsichtlich Vorwarnzeit, geographisch genauer Verortung und zu erwartender Niederschlagsmenge sind Starkregenereignisse kaum adäquat vorherzusagen. Umso wichtiger ist eine technische und inhaltliche Weiterentwicklung der Vorhersagemodelle. Hier setzt das BMBF-Verbundforschungsprojekt „KIWaSuS“ an.

KIWaSuS steht für „KI-basiertes Warnsystem vor Starkregen und urbanen Sturzfluten“. Ziel des Projektes ist es, die Vorwarnzeiten vor Sturzfluten in den Städten signifikant zu erhöhen, diese besser zu lokalisieren und gleichzeitig wichtige Informationen für das kommunale Krisenmanagement bereitzustellen, um Bürger:innen besser zu schützen. Dazu soll eine intuitive, digitale Karte erstellt werden, die in Abhängigkeit des bevorstehenden Starkregenereignisses bereits Ort und Ausmaß der resultierenden Überflutung frühzeitig und zuverlässig darstellt. Damit können Akteure vor Ort sinnvoll unterstützt werden: Einsatzpläne für Feuerwehr, Katastrophenschutz und Kanalnetzbetreiber können so individuell an das Ereignis angepasst werden. Bürger können rechtzeitig gewarnt werden und eigene Schutzmaßnahmen einleiten.
Erschwerend in den Ruhrgebietsstädten kommt die Trennung ganzer Stadtteile durch Unterführungen aufgrund von zahlreichen Autobahnen und Bahntrassen hinzu. Vergangene Starkregenereignisse haben gezeigt, dass sich nicht nur Geländetiefpunkte wie Unterführungen zu Hindernissen entwickeln, sondern sich auch ganze Straßenzüge innerhalb kürzester Zeit in reißende Ströme verwandeln können. Der Bedarf für ein effizientes Echtzeitwarnsystem ist nicht auf Gelsenkirchen begrenzt, sondern deutschlandweit gegeben.

Im Projekt KIWaSuS soll ‚Künstliche Intelligenz‘ (KI) als zentrales Element eingesetzt werden. Dabei handelt es sich um eine Technik, die normalerweise eher in modernen Smartphones, Autos oder Sprachassistenten zur Mustererkennung in Bildern und Sprache eingesetzt wird. In KIWaSuS soll KI dazu eingesetzt werden, Zusammenhänge und Muster bei der Entstehung von Starkregenzellen zu erlernen, um künftig die zeitliche und räumliche Entwicklung von Starkregenzellen besser vorhersagen zu können. Andererseits soll KI verwendet werden, um das Verhältnis zwischen Niederschlag und dem daraus resultierenden Abfluss zu erlernen. So sollen Überlastungen des Kanalnetzes und Überschwemmungen besser zu beschreiben sein.

Voraussetzung für den effizienten Einsatz von KI ist ein intensiver Trainingsprozess, der eine große Datenbasis benötigt. Die Daten werden aus verschiedenen Quellen erhoben: Für den Niederschlag werden Messdaten durch die Kommunen und Wasserverbände bereits seit mehreren Jahrzehnten erfasst. Für den niederschlagsbedingten Abfluss hingegen liegen derzeit kaum Daten vor. Hier werden physikalisch basierte Abflussmodelle genutzt, um künstliche Trainingsdaten zu generieren. Darüber hinaus soll ein innovatives Sensorsystem zur Nachverdichtung bzw. Ergänzung der Datenbasis errichtet werden. Sämtliche Datenströme sollen in einer zentralen Datenplattform zusammengefügt und durch entsprechende Transformationsprozesse in ein ML-geeignetes Format gebracht und für die Vorhersagemodelle zur Verfügung gestellt werden.

Beteiligt an diesem Verbundprojekt sind die Unternehmen neusta sd west, Gelsenwasser AG, Abwassergesellschaft Gelsenkirchen, das Institut Wasserbau- und Wasserwirtschaft der Universität Duisburg-Essen und die Institute Bauingenieurwesen sowie Mess- und Sensortechnik der Hochschule Ruhr West. Konsortialführer ist Prof. Dr. Markus Quirmbach vom Institut Bauingenieurwesen. Anforderungen und Daten liefern die Feuerwehr Gelsenkirchen, das Landesamt für Natur, Umwelt und Verbraucherschutz und die Emschergenossenschaft. Das Projekt startete im April 2021 und läuft bis März 2024. Gefördert wird das Projekt mit ca. 1,5 Mio. Euro aus der BMBF Förderrichtlinie: „Künstliche Intelligenz in der zivilen Sicherheitsforschung“ im Programm „Forschung für die zivile Sicherheit 2018 bis 2023“.

Wissenschaftliche Ansprechpartner:
Hochschule Ruhr West | Institut Bauingenieurwesen
Prof. Dr. Markus Quirmbach
Telefon: 0208/ 882 54 463
E-Mail: markus.quirmbach@hs-ruhrwest.de

Nachhaltige Stromerzeugung in Aquakultur, Kläranlage und Abwasserkanal

0
Traveler

Ein neues Forschungsprojekt des Instituts für Wasser und Energiemanagement der Hochschule Hof soll das Potential und die Nutzung von Wasserkraft in bestehenden Wasseranlagen fördern. Das vom Europäischen Sozialfond (ESF) mit 417.000 Euro geförderte Projekt „Netzwerk zur Erzeugung von Energie mit Wasserkraft in bestehenden Wasseranlagen (NEEWa)“, stärkt den Wissenstransfer aus der Green-Tech Hochschule Hof in die regionalen Unternehmen. Es soll zudem zum Erfolg des Kompetenzstandortes Wasser Hof und der erneuerbaren Energien in der Region beitragen.

„Überall, wo man Wasser fließen sieht, sieht man auch die Kraft des Wassers. Diese nicht zu nutzen, bedeutet Potential zu verschwenden“, so Dr. Harvey Harbach vom Institut für Wasser und Energiemanagement (iwe) der Hochschule Hof und Ideengeber des Forschungsvorhabens. Im neuen Projekt beschäftigen sich nun insgesamt 5 Wissenschaftler/Innen des iwe mit nachhaltiger Stromerzeugung in bestehenden Wasseranlagen.

Projektleiterin Prof. Manuela Wimmer stellt heraus: „Wir arbeiten allein mit Wasser, welches nach einer Erstnutzung zusätzlich noch zur Stromerzeugung verwendet werden soll. Konkret geht es um Wasser, welches in Aquakulturen zur Fischzucht genutzt wurde, in Kläranlagen zu Trinkwasser wiederaufbereitet wird oder schlichtweg um Brauchwasser, das durch das Abwasserkanalsystem von Haushalten fließt.“

In all diesen Fällen fließt das Wasser allein angetrieben durch die Schwerkraft. Stromenergie kann dabei – durch den Einsatz von Turbinen oder Wasserrädern – erzeugt werden, ohne die Ökosysteme zu beeinflussen. Ein mögliches Anwendungsbeispiel: „In unserer Region wird für die traditionelle Aquakultur Wasser durch Teiche geleitet in denen Fische wachsen. Oft werden dafür in einem Bruthaus die Jungtiere vorgezogen, damit diese durch eine gewisse Größe besser für die Umweltbedingungen außerhalb des Bruthauses gewappnet sind. Im Bruthaus benötigt man deshalb Strom u.a. für Pumpen. Die Idee liegt also nahe, diesen benötigten Strom vor Ort selbst mit nachhaltigen Methoden zu produzieren. Wasserkraft, welche 24h Energie bereitstellen kann, ist hierfür demnach in idealer Art und Weise geeignet“, so Dr. Harbach.

Zusammensetzen im Netzwerk
In unserer Region sind zahlreiche Fachkompetenzen in Form von spezialisierten Unternehmen, Landesämtern, Behörden und Bildungsträgern wie der Hochschule vorhanden. „Nur im Austausch und gemeinsamen Dialog können wir die besten Lösungen für eine nachhaltige Energiegewinnung 4.0 finden“ so Dr. Harvey Harbach. Die Hochschule Hof nimmt hierbei neben der fachlichen Koordination des Projekts auch eine unabhängige Stellung im Netzwerk ein. Die Hochschule verfolgt keine finanziellen Interessen und bietet hierdurch eine wissenschaftlich neutrale Netzwerktätigkeit um Wasserkraft auf Kosten-Nutzen-Kalkulation einer breiteren Nutzung zuzuführen. Ziel des Vorhabens ist es die gesamte Wertschöpfungskette unter dem Aspekt des Wissenstransfers im Netzwerk zusammen zu bringen. Durch die Etablierung des Netzwerks werden die Teilnehmer bezüglich der Chancen und Möglichkeiten weitergebildet. Der regelmäßige Austausch soll den Einsatz und die Weiterentwicklung bestehender und neuer Technologien zur Nutzung von Wasserkraft fördern.

Wasserkraft ein Beitrag zur Klimaneutralität
Die Europäische Union hat sich mit dem Green Deal bis 2050 zum Ziel gesetzt klimaneutral zu sein, d.h. die Emissionen von Nettotreibhausgas müssen vollständig vermieden werden. Dieses Ziel kann nur erreicht werden, wenn der Anteil an erneuerbaren Energien am Endenergieverbrauch gesteigert wird. Dieser Anteil soll bis 2030 auf 32% anwachsen. Diese Ziele werden auf nationaler Ebene mit dem Klimaschutzprogramm 2030 umgesetzt. Eine weitere Option der dezentralen Stromerzeugung aus Windkraft, Solarenergie und Biomasse stellt die Wasserkraft dar. Die Wasserkraft wird gekennzeichnet durch günstige Herstellungskosten und 100% saubere und grundlastfähige Energie aus rein durch Höhenunterschiede getriebenen Kraftwerken. Die größte Herausforderung ist aber die ökologische Verträglichkeit der Kraftwerke. „Wasserkraftwerke, egal welcher Größe, dürfen in keinem Fall zu einer Gefährdung der Flora und Fauna des Flussbettes führen. Aus diesem Grund werden in diesem Projekt keine Neubauten betrachtet, sondern ausschließlich bestehende Wasseranlagen“, so Prof. Dr. Wimmer.

Gesamtes Institut arbeitet zusammen
Das iwe bündelt Kompetenzen im Bereich Wasser und Energie. „Es freut mich ungemein, dass in diesem Projekt beide Kompetenzen zusammengeführt werden“, so Institutsleiter Prof. Dr. Tobias Plessing. Die Hochschule Hof arbeitet gemeinsam in zahlreichen Bereichen von angewandter Green-Tech Forschung.

Weitere Informationen zum Projekt finden Sie unter http://www.hof-university.de

https://idw-online.de/de/news769158